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Dripping faucet with ants
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The formation of droplets of ants is observed under certain experimental conditions. An aggregate forms at
the end of a rod, the size of this aggregate fluctuates, and a droplet containing up to 40 ants eventually falls
down. When the flux of incoming ants is sufficient, this process can continue for several hours, leading to the
formation and fall of tens of droplets. This phenomenon is reminiscent of a leaky faucet, a well-known
example of a simple chaotic system. It is found that the similarity is more than apparent: the time series of
drop-to-drop intervals appears to result from a nonlinear low-dimensional dynamics, and the interdrop incre-
ments exhibit long-range anticorrelatiof$1063-651X98)05505-4

PACS numbdss): 87.10+€, 05.40+j, 05.70.Ln

The dripping faucet was introduced as an early and simpl¢hose observed in other physical and biological systems in-
example of a chaotic systefi]. It has been the starting dicates that such properties may be “generic.”
point of several experimental and theoretical investigations The ants can run along a rod, starting in the middle of the
[1-4]. The physics of the system involves surface tensionnest, and ending in an separate arena at a height of about 10
which decreases the dripping rate, and gravity, which acts #&m above the groungFig. 1): an ant at the end of the rod can
a nonlinearly coupled competitive force. Here we report thegither decide to go back to the nest and succeed, or may be
results of laboratory experiments performed with ants, wherstuck in a forming dropletFig. 2) and eventually fall to the
ants aggregate at the end of a rod to form droplets that eveiground where she is retrieved, and put back into the nest at
tually fall down. A lot of the properties of this many-body the end of the experiment. Ants were starved for several days
biological system are similar to those of a leaky faucet: forto stimulate exploratory behavior. A colony contains about
examp|e’ the drop-to_drop interval time series appears to b3;05 individuals, 20% of which perform outside tasks such as
low dimensional[1,2] and the interdrop increments exhibit foraging or exploration. Exploration is accompanied with re-
long-range anticorrelation§3]. The physical mechanisms cruitment through trail laying. This leads to the formation of
underlying this phenomenon, although they are not fully un2 network of chemical trails through a positive feedback ef-
derstood, are likely to result from a competition betweenfect. Once a trail leads to the end of the rod, a relatively
gravity and the equivalent of tension or cohesive forcesstable flux of incoming ants is established for up to several
among ants. hours, after which exploration of the rod ceases. Measure-

The formation of bridges or chains in some insect colo-ments were analyzed only during the period immediately fol-
nies is one of the most striking collective patterns that arise4pwing the establishment of a stable recruitment. The net flux
in the animal kingdom. Such structures have been reporte®f ants fluctuates during this peri¢ftom nine to 27 ants/5 s,
for example, in the army anEciton burchelli[5], in the  With an average of 19 ants/$. §he experiment was repeated
African weaver antOecophylla longinodd5,6], or in the  eight times, producing eight series of up to 300 drops.
honeybeeApis mellifica[7]: workers form bridges or chains ~ Several quantities have been measured during the experi-
by linking their bodies when they explore a new space, formments: the incoming flux of ants at the beginning of the rod,
a bivouac, or cooperate in nest building. How these bridgethe outgoing flux of ants at the same point, the number of
or chains form is to a large extent an unsolved question. Wants located in the vicinity of the rod’s erfdnd therefore
have carried out experiments with the dnhepithema hu- likely to fall), the sizes of droplets, and the time intervals
mile (Mayr) [8], which is not known to form bridges: how- separating two successive droplets. In this paper, we focus
ever, we have observed that these ants can aggregate to form
droplets of up to 40 individuals under specific conditions,
described below. The formation of these basic structures can
bring much insight into the dynamics of bridge or chain for-

rod

mation in ants, where such processes have been observed in nest
natural conditions. In addition, the fact that the dynamic bridg
properties of the process of droplet formation are similar to @Q
plate foraging area
*Electronic address: bonabeau@santafe.edu FIG. 1. Experimental setup.
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dimension at a valu®,=1.7+0.04, indicating that the un-
derlying dynamics may be low dimension@h their model

of a dripping faucet, Sanchez-Ortiz and Salas-Bitpfind
D,=1.25*+0.08 for their electrocardiogram attragtdonger
series would be desirable, but could not be obtained in the
experiments. Surrogate data series, exhibiting a significantly
different behavior(t test, p<<0.01 for both surrogate data
setg, support the hypothesis that the dynamics is nonlinear.
Aggregation at the end of the rod is a many-body phenom-
enon, that involves a large number of degrees of freedom:
our result suggests that these degrees of freedom are to a
large extent interdependent, and that the dynamical process
involves only a few effective variables. The result is very
different for thes(n) time series, where no evidence of low-
dimensional nonlinear dynamics is fourld; increases with
increasing embedding dimension, and so do the surrogate
series.

How can the series of interdrop intervals be nonlinear low
dimensional, while that of droplet sizes is not? Both series
can be considered as sequences of snapshots of events which
do not take place on the same time scale. Videotape analysis
of droplets shows that very rapid and complex movements
occur within droplets, at a time scale which is short com-
pared with the time interval separating two successive drop-
lets: the number of ants in a given droplet is the result of a
process involving fast interacting variables, which weakly

FIG. 2. A droplet is about to fall, while the next droplet is depend on the slower process of aggregation at the end of the
already forming at the end of the rod. rod. Although it is not completely clear from the data, the

factors that determine when a droplet falls certainly include
on the last two measurements, which allow us to draw a cleahe fact that the set of links between the surface of the rod
parallel with a dripping faucet. and the rest of the droplet is pushed beyond “capacity;” this

Figures 3a) and 3b) show the reconstructed phase por-notion of capacity must be clarified, since it may involve
traits in three dimensions of two serigst(n), the time in-  several factors, such as the “history” of a link, the exhaust-
terval separating then 1)th droplet from thenth droplet, ing movements of other ants in the droplet, or even a satu-
and s(n), the size of thenth droplet. In both cases, the ration, which does not depend on the droplet's mass but on
“time” lag of the reconstruction is 1. It can already be seenthe physiological state or the lack of “motivation” of the
that theAt(n) series has more structure than #ife) series.  various links. Assuming that th&t(n) series is determinis-
We use Takens maximum-likelihood methi@] to evaluate tic, let F be the deterministic application such that(n
the correlation dimensioD, of the experimental series. Two +1)=F[At(n)]. If, due to rapid fluctuationsAt(n) is
surrogate data method@hase randomized and Gaussiantransformed intoAt(n)+ &, where 5™ is a small noise
scaled surrogate$10] were used. The value @, found in  term, the modified trajectory]...,At(n)+ 6™, F(At(n)
the At(n) series rapidly saturates with increasing embeddingt 5™)+ 6"*1), .. ] is not unlikely to remain a trajectory of
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FIG. 3. (a) Reconstructed phase portrpiit(n),At(n+1),At(n+2)] of the At(n) series.(b) Reconstructed phase portrag(n),s(n
+1),s(n+2)] of thes(n) series.
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FIG. 4. Fluctuations=(n) of the interdrop incremenit(n). A FIG. 5. Power spectrum of the interdrop inc;emem). The
random walk would have produced the dotted line=(0.5). dotted line represents the best power-lawsit)<f”, f=1.58.

the deterministic system if “shadowing” appligd1]. On
the other hands(n) will be drastically modified bys" if it
fluctuates on a time scale shorter thaf? [s(n) is also
likely to be dependent on fluctuations of the flux of gnts
effect, s(n) is the size of the droplet at the exact time when

of I(n) are likely to alternate in time. The origin of such
anticorrelations can be traced back to the dynamics of drop-
lets: a rapid succession of two droplets is likely to be fol-
lowed by a longer time interval, because the aggregate of
. T an ; ants at the end of the rod has been depleted as a result of the
gnf:i?[ I:Le;(f)()n)rn_ai/(tar_eitil;lgi#é)r).eIQIf f\:) a:ll;ez”?;sé(tnq) two droplets that just fell down, and it takes time for a new

n ' ' droplet to form again and fall. Perag al.[12] found similar

because a large number of reorganizing events took place rc])n -range anticorrelations and non-Gaussian behavior in
the droplet betweety, andt,+ &M. g-rang

Finally, we analyzed the series of interdrop increment41eartbeat—to—heartbeat intervals of healthy ;ubjects. Penna
I(n)=At(n+1)—At(n). Let us define the mean fluctuation Et al. [3] also found the same type of behavior in a model
function F(n)=(|At(n’+n)— At(n)|},: , where(---), de- Igaky faucet, suggesting that thq analogy betweer'l 'Fhe drip-
notes averaging over’: F(n) quantifies the magnitude of ping fgu_cet and our expenr_nent is not only superficial, and
the fluctuations over different scales [3,12]. We obtain that similar sets of competing forcésohesive forces and
F(n)=n® (Fig. 4), with a=—0.05, whereas a random walk gravity) play similar roles in determining the dynamics of the

o ) tem.

would have produceda=0.5 (dotted line in Fig. 4 Sys . . . . .
Similarly, the probability densityP(I) of I(n) seems Although we have no funcﬂonal explanation for th's
to be well described by a by law [P(l) phenomenoin this specie®f ants—it may be a nonadaptive

1w v . . side effect of functional traits, such as recruitment, used in
=7 [, exp(—aq’)cosql)dg, wherey~1.5; a Lorentzian ; ot .
distribution would correspond t¢=1, and a Gaussian dis- explqratory and fpragmg activities, gnd may possm!y oceur
tribution to y—2] [3.12], but q ’t Id b ded t only in “pathological” situations—it is nevertheless impor-
J(I)nl;ill%n tr?ig:)bserv’ati(;n ulnm(())rrdeerioa ;\{Sgy thee n;;naemiccz)altant to point out the similarities that exist between its dy-
. ' namic properties and those of other physical or biological
properties ofl(n) further, the power spectrum df(n), brop phy 9

S(f)=N"Y|=N_,1(n)e? ™|2), where(: --) denotes averag- systems.

ing over the eight time series, has been computed. It is found E.B. would like to thank Interval Research for financial
that S(f )= f#, with 8=1.58 (Fig. 5 [one would expec8  support at the Santa Fe Institute. E.B. and G.T. acknowledge
=1-2a=1.1: this discrepancy may result from the fact thatsupport from the GISGroupe d’Infeet Scientifiqu¢ Sci-
neither S(f) nor F(n) are perfect power lawsindicating ences de la Cognition. The correlation dimension analysis
thatl(n) is anticorrelated13]: interdrop increments are or- has been performed in part with Ts tools, courtesy of J.
dered in a particular way, where positive and negative value$heiler.
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