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Dripping faucet with ants
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The formation of droplets of ants is observed under certain experimental conditions. An aggregate forms at
the end of a rod, the size of this aggregate fluctuates, and a droplet containing up to 40 ants eventually falls
down. When the flux of incoming ants is sufficient, this process can continue for several hours, leading to the
formation and fall of tens of droplets. This phenomenon is reminiscent of a leaky faucet, a well-known
example of a simple chaotic system. It is found that the similarity is more than apparent: the time series of
drop-to-drop intervals appears to result from a nonlinear low-dimensional dynamics, and the interdrop incre-
ments exhibit long-range anticorrelations.@S1063-651X~98!05505-6#

PACS number~s!: 87.10.1e, 05.40.1j, 05.70.Ln
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The dripping faucet was introduced as an early and sim
example of a chaotic system@1#. It has been the starting
point of several experimental and theoretical investigati
@1–4#. The physics of the system involves surface tensi
which decreases the dripping rate, and gravity, which act
a nonlinearly coupled competitive force. Here we report
results of laboratory experiments performed with ants, wh
ants aggregate at the end of a rod to form droplets that e
tually fall down. A lot of the properties of this many-bod
biological system are similar to those of a leaky faucet:
example, the drop-to-drop interval time series appears to
low dimensional@1,2# and the interdrop increments exhib
long-range anticorrelations@3#. The physical mechanism
underlying this phenomenon, although they are not fully u
derstood, are likely to result from a competition betwe
gravity and the equivalent of tension or cohesive forc
among ants.

The formation of bridges or chains in some insect co
nies is one of the most striking collective patterns that ari
in the animal kingdom. Such structures have been repor
for example, in the army antEciton burchelli @5#, in the
African weaver antOecophylla longinoda@5,6#, or in the
honeybeeApis mellifica@7#: workers form bridges or chain
by linking their bodies when they explore a new space, fo
a bivouac, or cooperate in nest building. How these brid
or chains form is to a large extent an unsolved question.
have carried out experiments with the antLinepithema hu-
mile ~Mayr! @8#, which is not known to form bridges: how
ever, we have observed that these ants can aggregate to
droplets of up to 40 individuals under specific condition
described below. The formation of these basic structures
bring much insight into the dynamics of bridge or chain fo
mation in ants, where such processes have been observ
natural conditions. In addition, the fact that the dynam
properties of the process of droplet formation are similar
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those observed in other physical and biological systems
dicates that such properties may be ‘‘generic.’’

The ants can run along a rod, starting in the middle of
nest, and ending in an separate arena at a height of abo
cm above the ground~Fig. 1!: an ant at the end of the rod ca
either decide to go back to the nest and succeed, or ma
stuck in a forming droplet~Fig. 2! and eventually fall to the
ground where she is retrieved, and put back into the nes
the end of the experiment. Ants were starved for several d
to stimulate exploratory behavior. A colony contains abo
105 individuals, 20% of which perform outside tasks such
foraging or exploration. Exploration is accompanied with r
cruitment through trail laying. This leads to the formation
a network of chemical trails through a positive feedback
fect. Once a trail leads to the end of the rod, a relativ
stable flux of incoming ants is established for up to seve
hours, after which exploration of the rod ceases. Measu
ments were analyzed only during the period immediately f
lowing the establishment of a stable recruitment. The net fl
of ants fluctuates during this period~from nine to 27 ants/5 s
with an average of 19 ants/5 s!. The experiment was repeate
eight times, producing eight series of up to 300 drops.

Several quantities have been measured during the ex
ments: the incoming flux of ants at the beginning of the ro
the outgoing flux of ants at the same point, the number
ants located in the vicinity of the rod’s end~and therefore
likely to fall!, the sizes of droplets, and the time interva
separating two successive droplets. In this paper, we fo

FIG. 1. Experimental setup.
5904 © 1998 The American Physical Society
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57 5905DRIPPING FAUCET WITH ANTS
on the last two measurements, which allow us to draw a c
parallel with a dripping faucet.

Figures 3~a! and 3~b! show the reconstructed phase po
traits in three dimensions of two series:Dt(n), the time in-
terval separating the (n11)th droplet from thenth droplet,
and s(n), the size of thenth droplet. In both cases, th
‘‘time’’ lag of the reconstruction is 1. It can already be se
that theDt(n) series has more structure than thes(n) series.
We use Takens maximum-likelihood method@9# to evaluate
the correlation dimensionD2 of the experimental series. Tw
surrogate data methods~phase randomized and Gaussi
scaled surrogates! @10# were used. The value ofD2 found in
theDt(n) series rapidly saturates with increasing embedd

FIG. 2. A droplet is about to fall, while the next droplet
already forming at the end of the rod.
ar

g

dimension at a valueD251.760.04, indicating that the un
derlying dynamics may be low dimensional~in their model
of a dripping faucet, Sanchez-Ortiz and Salas-Brito@4# find
D251.2560.08 for their electrocardiogram attractor!; longer
series would be desirable, but could not be obtained in
experiments. Surrogate data series, exhibiting a significa
different behavior~t test, p,0.01 for both surrogate dat
sets!, support the hypothesis that the dynamics is nonline
Aggregation at the end of the rod is a many-body pheno
enon, that involves a large number of degrees of freed
our result suggests that these degrees of freedom are
large extent interdependent, and that the dynamical pro
involves only a few effective variables. The result is ve
different for thes(n) time series, where no evidence of low
dimensional nonlinear dynamics is found:D2 increases with
increasing embedding dimension, and so do the surro
series.

How can the series of interdrop intervals be nonlinear l
dimensional, while that of droplet sizes is not? Both ser
can be considered as sequences of snapshots of events
do not take place on the same time scale. Videotape ana
of droplets shows that very rapid and complex moveme
occur within droplets, at a time scale which is short co
pared with the time interval separating two successive dr
lets: the number of ants in a given droplet is the result o
process involving fast interacting variables, which weak
depend on the slower process of aggregation at the end o
rod. Although it is not completely clear from the data, t
factors that determine when a droplet falls certainly inclu
the fact that the set of links between the surface of the
and the rest of the droplet is pushed beyond ‘‘capacity;’’ t
notion of capacity must be clarified, since it may involv
several factors, such as the ‘‘history’’ of a link, the exhau
ing movements of other ants in the droplet, or even a sa
ration, which does not depend on the droplet’s mass bu
the physiological state or the lack of ‘‘motivation’’ of th
various links. Assuming that theDt(n) series is determinis-
tic, let F be the deterministic application such thatDt(n
11)5F@Dt(n)#. If, due to rapid fluctuations,Dt(n) is
transformed intoDt(n)1d (n), whered (n) is a small noise
term, the modified trajectory@ ...,Dt(n)1d (n),F(Dt(n)
1d (n))1d (n11),...# is not unlikely to remain a trajectory o
FIG. 3. ~a! Reconstructed phase portrait@Dt(n),Dt(n11),Dt(n12)# of the Dt(n) series.~b! Reconstructed phase portrait@s(n),s(n
11),s(n12)# of the s(n) series.
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5906 57ERIC BONABEAU et al.
the deterministic system if ‘‘shadowing’’ applies@11#. On
the other hand,s(n) will be drastically modified byd (n) if it
fluctuates on a time scale shorter thand (n) @s(n) is also
likely to be dependent on fluctuations of the flux of ants#. In
effect,s(n) is the size of the droplet at the exact time wh
it falls. Let s(n)5s„tn[( i 51

n Dt( i )…. The values ofs(tn)
and s(tn1d (n)) may greatly differ, even for a smalld (n),
because a large number of reorganizing events took plac
the droplet betweentn and tn1d (n).

Finally, we analyzed the series of interdrop increme
I (n)5Dt(n11)2Dt(n). Let us define the mean fluctuatio
function F(n)5^uDt(n81n)2Dt(n)u&n8 , where^¯&n8 de-
notes averaging overn8: F(n) quantifies the magnitude o
the fluctuations over different scalesn @3,12#. We obtain
F(n)}na ~Fig. 4!, with a520.05, whereas a random wa
would have produceda50.5 ~dotted line in Fig. 4!.
Similarly, the probability densityP(I ) of I (n) seems
to be well described by a Le´vy law @P(I )
5p21*0

` exp(2aqC)cos(qI)dq, wherec'1.5; a Lorentzian
distribution would correspond toc51, and a Gaussian dis
tribution to c52# @3,12#, but more data would be needed
confirm this observation. In order to study the dynami
properties of I (n) further, the power spectrum ofI (n),
S( f )5N21^u(n51

N I (n)e2ip f tu2&, where^¯& denotes averag
ing over the eight time series, has been computed. It is fo
that S( f )} f b, with b51.58 ~Fig. 5! @one would expectb
5122a51.1: this discrepancy may result from the fact th
neither S( f ) nor F(n) are perfect power laws#, indicating
that I (n) is anticorrelated@13#: interdrop increments are or
dered in a particular way, where positive and negative val

FIG. 4. FluctuationsF(n) of the interdrop incrementI (n). A
random walk would have produced the dotted line (a50.5).
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of I (n) are likely to alternate in time. The origin of suc
anticorrelations can be traced back to the dynamics of dr
lets: a rapid succession of two droplets is likely to be f
lowed by a longer time interval, because the aggregate
ants at the end of the rod has been depleted as a result o
two droplets that just fell down, and it takes time for a ne
droplet to form again and fall. Penget al. @12# found similar
long-range anticorrelations and non-Gaussian behavio
heartbeat-to-heartbeat intervals of healthy subjects. Pe
et al. @3# also found the same type of behavior in a mod
leaky faucet, suggesting that the analogy between the d
ping faucet and our experiment is not only superficial, a
that similar sets of competing forces~cohesive forces and
gravity! play similar roles in determining the dynamics of th
system.

Although we have no ‘‘functional’’ explanation for this
phenomenonin this speciesof ants—it may be a nonadaptiv
side effect of functional traits, such as recruitment, used
exploratory and foraging activities, and may possibly occ
only in ‘‘pathological’’ situations—it is nevertheless impo
tant to point out the similarities that exist between its d
namic properties and those of other physical or biologi
systems.
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FIG. 5. Power spectrum of the interdrop incrementI (n). The
dotted line represents the best power-law fitS( f )} f b, b51.58.
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